这是一本以拓扑学中的纽结理论为主题、美学色彩浓厚的图书。关于纽结理论,理解全书绝大部分内容只需用到中学数学知识;个别章节尽管需要高等数学的知识,但无需担心,附录会帮助读者快速了解相关内容。与此同时,对于想了解纽结理论的科技工作者而言,这也是一本简明的纽结理论综述。本书分为6章及附录。第1章通往纽结之路,作为入门指南,介
本书聚焦复杂曲面建模技术瓶颈,深度融合艺术审美与工程需求,系统构建了从基础操作到高阶造型的完整知识体系。全书内容设置由浅入深、循序渐进,分为9章:第1、2章系统阐述数字化建模的理论框架与软件操作基础;第3~5章深入剖析曲面创建与编辑、渐消面建构及五边曲面创新方法,突破传统四边拓扑的限制;第6~9章通过IPTV遥控器、红
《奇异点理论及其应用:英文》是《国外优秀数学著作原版丛书》中的一部,汇集了莫斯科大学力学与数学系奇点理论研讨会最新研究成果。奇点理论作为数学中高度抽象领域与实际应用之间的桥梁,广泛涉及代数几何、微分几何、拓扑学、辛几何、控制理论、偏微分方程等学科。书中内容不仅包括奇点理论在控制理论、双曲方程系统、实代数几何等领域的应用
本书由黎曼15篇论文构成,展示了黎曼对空间与几何概念的研究成果,每篇都独立成章,涵盖几何、数论、物理等领域,如分析给定边界内的极小曲面、椭圆模函数极限的情况、用三角级数表示函数的方法,以及如何构建积分和微分概念等。
本书内容全面,可塑性强,适应不同层次的教学要求;注重理论性与应用性相结合;能拓宽学生的视野,培养学生的综合素质。本书内容包括空间直角坐标与向量代数、空间平面与直线、空间曲面与曲线、二次曲线的一般理论、空间直角坐标变换与点变换、二次曲面的一般理论等。每章附有应用示例、小结等。每节配有习题,每章配有测试题。
本书是大学几何学的入门书,既可作为高等院校相关课程的指定教材或参考资料,也可为广大几何学爱好者提供一扇窥探现代几何学奥秘的窗口。全书以几何变换这一核心思想为主线,共设六个章节,依次深入探讨几何公理化基础、三维欧几里得空间、刚体变换、埃尔朗根纲领、射影平面及其变换,以及拓扑空间与拓扑变换。其中,第一、四、六章内容较为精炼
本书主要利用McMahon的构造和组合独立性得到了一个极小的null作用,同时也是某个极小强proximal作用的一个point-distal、RIM非开的扩张,从而回答了Glasner的一个问题。同时还利用有限多个子集串的独立密度证明了具有正的naive拓扑熵的作用是Li-Yorke混沌但不是tame,从而回答了Le
本书主要介绍了特定几何对象的拓扑领域,同时介绍了受其启发产生的相关知识。这些对象的范围相当广泛,包含从复射影曲面的经典扭结到实射影空间中的子空间的构形,在流形的拓扑学中探讨了多维空间的几何性质及其内在结构,在人工智能和机器学习以及模式识别等领域中,流形的概念被用来描述高维数据集的内在结构。本书包含的15篇论文,内容包含
本书对可积系统进行了拓扑分类,可视为一个研讨的论文集。本书中的研究论文发展了一些已经找到的观点,特别是在斯梅尔、博特、瓦尔豪森、雅克、诺维科夫的工作中找到的观点。本书主要介绍了多维可积哈密尔顿算子系统不变量理论(任意多个自由度)、解析动力学与物理学中的可积哈密尔顿算子系统、刚体运动方程主要可积情况的福缅科不变量、二维环
本教程是为教育部101计划编写的数学方向微分几何教材。内容紧贴101计划几何组工作会议提出的大纲。分为三个大的章节:第一章介绍古典曲线和曲面的微分几何,重点围绕曲率这一核心概念展开。第二章以高斯绝妙定理为开端,引入内蕴几何学的观点,介绍曲面上协变导数,平行移动,测地线,指数映射等概念,最终推向高斯博内公式和常曲率空间的