《非线性太赫兹光谱的概念与应用(英文)》是一部英文版物理学专著。
《非线性太赫兹光谱的概念与应用(英文)》所涉及的是所谓的凝聚态物质,凝聚态是固态和液态的通称,凝聚态物理学是研究固体和液体的基础科学。
Thomas Elsaesser,a director at the Max-Born-Institute, Berlin, Germany, and a full professor for experimental physics at Humboldt University, Berlin. He received a Dr rer. nat. degree from the Technical University of Munich in 1986 and worked there as a research associate until 1993. He spent a postdoc period at AT&T Bell Laboratories, Holmdel, in 1990 and joined the newly established Max-Born-Institute in 1993. His research focuses on ultrafast phenomena in condensed matter, in particular molecular liquids, biomolecules in their aqueous environment, and inorganic solids and nanostructures. Combined in his experimental work are methods of ultrafast spectroscopy and structure research. Thomas is a fellow of the American Physical Society and the Optical Society of America and has received numerous scientific awards.
Klaus Reimann,has worked since 1999 as a scientist at the Max-Born-Institute, Berlin, Germany, in the field of ultrafast mid-infrared and THz spectroscopy. He received a Dr rer. nat. degree from the University (now Technical University) of Dortmund in 1987. Afterwards he joined the Max-Planck-Institut fur Festkorperforschung in Stuttgart and worked there on the physics of semiconductors under high pressures. Having received a five-year Heisenberg-Stipendium of the Deutsche Forschungsgemeinschaft, he spent this time at the Universitat Dortmund and at the University of California at Berkeley doing research on nonlinear optics of semiconductors under high pressure before joining the MBI.
Michael Woerner,a department head at the Max-Born-Institute, Berlin, Germany, and holds a lecturer qualification (Habilitation) in physics at Humboldt University, Berlin. He received a Dr rer. nat. degree from the Technical University of Munich in 1991 and worked there as a postdoc until 1993. He then joined the Max-Born-Institute in 1993 and spent a postdoc period at Bell Laboratories (Lucent Technologies), Holmdel, in 1997. Michael's research focuses on ultrafast phenomena in solids and nanostructures with pioneering work in multi-dimensional spectroscopies in the THz frequency range and in femtosecond x-ray diffraction using laser-driven hard x-ray sources.