《线性代数习题详解与提高》是北京建筑大学数学系编写的《线性代数》(2019版)的配套教材。本书对《线性代数》各章知识进行了梳理和总结,包括知识脉络图、知识要点和学习要求;对各章的习题和复习题做了详尽的解答;同时,为满足学有余力的读者的需要,还补充了“常见题型”部分,其中不乏考研真题,这部分题目在难度和解题技巧方面都有进
本书重点论述微分几何与共轭…面原理在齿轮啮合传动与运动分析方面的应用。首先以矢量函数…线论与…面论为基础,拓展了密切…面、等距…面、…率并矢等内容,丰富了典型…线与…面的应用实例;然后概括了共轭…面运动的两类特征函数与特征矢量,围绕共轭…面的整体几何与微分几何论述了空间…面运动的形成原理、模型构建与分析方法;最后以弧齿
自1998年PT对称量子力学(非经典量子力学)被提出以来,逐步激发了人们对有关PT对称理论和实验方面的广泛关注.作者自2007年开始研究PT对称相关的问题,本书的主要内容源于作者的部分研究成果.本书主要阐述PT对称理论、方法及其在线性和非线性波方程中的应用,主要针对具有物理意义的不同复值PT对称势,研究非厄米Hamil
本书以奇摄动控制系统为对象,以Kokotovic奇摄动方法为框架,并以输入状态稳定(ISS)概念作为刻画外部干扰的工具,在Tikhonov极限定理的基础上,首先讨论了ISS分析与控制,包括基于状态观察器的控制器设计;其次对具有内部不确定性和外部干扰输入的奇摄动控制系统,分别研究了相应鲁棒ISS稳定与镇定;然后分别讨论了
《矩阵特征值定位理论》较为全面、系统地介绍了矩阵特征值定位的基本理论、方法及其相关问题.《矩阵特征值定位理论》共五章,包括预备知识、Ger.gorin圆盘定理与严格对角占优矩阵、Brauer卵形定理与双严格对角占优矩阵、几类结构矩阵的特征值定位与估计(包括非负矩阵谱半径的估计、随机矩阵非1特征值的定位与估计、Toepl
本教材为“十二五”普通高等教育本科***规划教材和“十三五”江苏省高等学校重点教材,本教材第二版获首届全国教材建设奖全国优秀教材二等奖.内容包括矩阵、n维向量、线性方程组、矩阵的特征值和特征向量、二次型.本教材不仅力求内容的科学性与系统性,而且注重代数概念的几何背景以及实际应用背景的介绍,以利于读者更好地理解和掌握线性
本书为科学出版社出版的《线性代数(第三版)》(李福乐主编)的配套用书,是编者多年教学经验的总结.本书每章内容包括主要内容、基本要求、典型方法举例、课后习题详解、考研真题选解.其中,主要内容列出了各章的基本概念和常用的重要结论;基本要求指出了各章中每一部分内容应该掌握到什么程度,便于读者在复习时能合理分配力量;典型方法举
本书较全面地介绍了线性代数的主要内容。全书共7章,分别介绍了行列式、n维向量、矩阵、线性方程组、方阵的特征值和特征向量、二次型以及线性空间与线性变换。每章末配有一定数量的习题,并在书后附有习题参考答案。每章后面都附有一篇阅读材料,或介绍一则基础知识,或给出一种重要方法,以便于查阅和开阔视野。
《线性代数(第三版)》根据编者多年的教学实践,参考普通本科院校理工、经管类专业线性代数课程教学大纲及硕士研究生入学考试大纲编写而成.内容涵盖行列式、矩阵、线性方程组与向量组、矩阵的特征值与特征向量、二次型等知识;《线性代数(第三版)》融入了MATLAB数学软件程序实现的教学内容,特别地,每章还给出了线性代数的2—3个实
《参数*线*面造型设计理论》主要介绍了CAD和CAM中广泛使用的Bézier方法、B样条方法的基础理论以及扩展模型,内容包括有理Bézier*线以及双二次、双三次有理Bézier*面的光滑拼接条件,Bézier*线在多项式空间与三角函数空间上的扩展,形状可调B&e